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Abstract. This pape~reporte on an owgoing Project to investigate techniques to 
diagnose COZIIP~X dynamical systems tbat ~UB modeled a~ hybrid systeme. In par- 
ticular, we examiae continuous systems witll embedded supervisory cantrollers 
that experience abrupt, partialor fidl %lure ofcomponent devices. We cast the 
diagnosis problem a a model selection problem. To reduce the space of potential 
models under mideratian, we exploit techniques firnu qualitative reasoning to 
conjecture an initial set of qualitative candidate diagnoses, which mduce a small- 
set ofmodels. We reak thesediagnom using parameter estimation and model 
Wig techniques. As a motivating case study. we have examined rhe problem of 
diagnosing NASA's Sprint AERCam, a small spberid robotic camea unit wih 
12 thrusters that enable both linear and rotational motion. 

1 Introduction 

The objective of our project has been to investigate how to diagnose hybrid systems 
- complex dynamical systems whose behavior is modeled as a hybrid system. Hybrid 
models comprise both discrete and continuous behavior. They are typically represented 
as a sequence of piecewise continuous behaviors mterleaved with discrete transitions 
(e.g., [q). Each period of contmuous behavior represents a so-called mode of the sys- 
tem. For example, m tbe case of NASA's Sprint AERCam, modes might include trans- 
latex-axis, mtateX-axis, tmnslate-Y-axir, etc. [ I]. In the case of an Airbus fly-by-wire 
system, modes might include take+& landing, climbing, and cnrke. Mode transitions 
g e n d l y  result m changes to the set of equations goveming the continuous behavior of 
the system, as well as to the state vector that initializes that behavior m the new mode. 
Discrete transitions that dictate mode switching are modeled by fisite state automata, 
temporal logics, switching functions, or some other transition system, while continuous 
behavior within a mode is modeled by, e.g., ordinary Meremtial equations (ODES) or 
differential and algebraic equation8 (DAEs). 

The problem we address in this paper is how to diagnose such hybrid systems. For 
the purposes of this paper, we consider the class of hybrid systems that are continuous 
systems with an embedded supervisory controller, but whose hybrid models contain no 
autonomous jumps. Le., all nominal transitions between system modes are induced by 
a controller action, none are induced by the system state and model [q. The class of 
systems we consider can be modeled as a composition of a set of component subsys- 
tems, each of which is itselfa hybrid system. We assume that the system operation is 
being tracked by a monitoring and observer system (e.g., [ 191) that ensures that the sys- 
tem behavior predicted by the model does not deviate sipficautly fium the observed 



behavior in nomlal system operation. When observations occur outside this range, the 
behavior is deemed to be aberrant and diagnosis is initiated In this paper, we consider 
faults whose onset is abrupt, and which result m partial or complete degradation of 
component behavior. The general problem we wish to address can be stated as follows: 
Given a hybrid model of sjwtem behavior: a hbtoty of executed contmller actions. a hb- 
tory of observations. including observations of abermnt behavior relorive to the model, 
isolate the fault that is the cause for the abwmnt behavior. Diagnosis is done online 
in conjunction with the continuedoperation of &e system. Hence, we divide our diag- 
nosis task mto two stages, initial conjecturing of candidate diagnosis and subsequent 
refinement and tracking to select the most likely diagnoses. 

In this paper we conceive the diagnosis problem as a model selection problem. The 
task is to find a mathematical model and associated parameter values that best fit the sys- 
tem data. These models dictate the components of the system that have malfunctioned, 
their mode of Wure, the estimated time of fkilure and any additional parameters that 
fiather characterize the failure. To address this diagnosis problem, we propose to ex- 
ploit AI techniques for qualitative diagnosis of continuous systems to generate an initial 
set of qualitative candidate diagnoses and associated models, thus drastically reducing 
the number of potential models for our system. This is followed by parameter estima- 
tion and model fitting techniques to select the most likely mode and system parametem 
for candidate models of system behavior, given both past and subsequent observations 
of system behavior and controller actions. The main contributions of the paper are: 1) 
fclnnulation of the hybrid diagnosis problem; 2) the exploitation of techniques for qual- 
itative diagnosis of continuous systems to reduce the diagnosis search space; and 3) the 
use of parameter estimation and data fitting techniques for evaluation and comparison 

In Section 2 we provide a brief description of NASA's S+t AERCam, which we 
have used as a motivating example and which we will use to illustrate certajn concepts 
m this paper. In Section 3 we present a formal characterization of the class of hybrid 
systems we study and the diagnosis problem they present. In Section 4 we describe our 
approach to hybrid diagnosis and the algorithms we use to achieve hybrid diagnosis. 
The generation of initial candidate qualitative diagnoses is described m Section 4.1, 
and the subsequent quautitative fitbag and tracking of cmdidate diagnoses and their 
models is described in Section 4.2. In the final two sections, we brieily discuss related 
work and summarize our conttibutions. 

of candidate diagnoses. 

2 Motivating Example: The AERCam 

We are using NASA's Sprint AERCam and a simulation of system dynamics and the 
controller written m Hybrid CC (HCC) as a testbed for this work. We describe the 
dynamic model of the AERCam system briefly, a more detailed description of the model 
and simulation appear m [ 11. 

The AERCam is a small spherical robotic camera unit, with 12 thrusters that &ow 
both linear and rotational motion (Fig. 1). For the purposes of this model, we assume 
the sphere is uniform, and the fuel that powers the movement is m the center of the 
sphere. The fuel depletes as the thrusters fire. 
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Fig. 1. The AERCnm axes and thrusters 

The dynarmcs of the AERCam are described in the AERCam body frame of refer- 
ence. The translation velocity of this frame with respect to the shuttle inertial m e  of 
reference is 0. However, its orientation is the same as the orientation of the AERCam, 
thus its orientation with respect to the shuttle ref'erence h e  changes as the AERCam 
rotates (i.e., it is not an inertial frame). The twelve thrusters are aligned 50 that t h m  
are four along each major axis m the AERCam body M e .  For modeling purposes, 
we assume the positions of the thrusters are on the centers of the edges of a cube cir- 
cumscribing the AERCam. Thus, for example, thrusters TI, Tz, T& TI are parallel to 
the r-axis and are used for translation along the .,.-axis or rotation around the y-axis. 
Le., firing thrusters TI  and T2 results in translation along the positive x-axis, and firing 
thrusters TI and TI results in a negative rotation aroundthe y-axis. AERCam operations 
are simplified by limiting them to either translation or rotation. Thrusters are either on 
or off, therefore, the control actions are discrete. In a normal mode of operation, only 
two thrusters are on at any time. 

2.1 AERCam dynamics 

A simplified model of the AERCam dynamics based on Newtonian laws is derived us- 
ing an inertial frame of reference k e d  to the space shuttle. The AERCam position in 
this fiame is defined as the triple (r. y. I). Let be the velocity in the AERCam body 
frame, with its vector components given by ( t i .  1'. w).  The frame rotates with respect 
to the inertial reference M e  with velocity = (p. q. r) ,  the angular velocity of the 
AERCam. The rotating body frame implies an aational Coriolis force acting upon the 
AERCam. We assume uniform rotational velocity since in the n o m 1  mode of opera- 



tion, the AERCam does not translate and rotate at the same time [2, pg. 1301. Similar 
equations can be derived for the rotational dynamics [ 11. 
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The resultant equation for each coordinate: 
du/dt = F , / m  - 2 ( p i  - vr) - ( n / m )  * dni/rlt 
rlv/r l t  = F,,/na - 2(.1.f~ - pu) - (~ /nb)  * dnr/rlt 
dui/rlt = F - / m  - 2(1~1-  qu) - (ro/nt) * dni/dt 

2.2 Position Control Mode of the AERCam 

In the position control mode, the AERCam is directed to go to a specified position and 
point the camera in a particular direction. Assume the AERCam is at position A and 
directed to go to position B. In the first phase, the AERCam rotates to get one set of 
thrusters pointed towards B. These are then fired, and the AERCam cruises towards B. 
Upon reaching a position close to B, it h s  thrusters to converge to B, and then rotates 
to point the camera in the desired direction. 

To facilitate the i l l u ~ a t i m  of the diagnosis problem, we use a simple trapzoidal 
controller, which we explain m two dimensions. Suppose the task is to travel along 
the .r-axis for some distance, then along the y-axis. Such manmums are needed for 
navigating in the space shuttle. In order to do this, the AERCam h s  its .r thrusters 
for some time. Upon reaching the desked velocity, these are switched off. When the 
AERCam has reached a position close to the desired .r position, the reverse thrusters are 
switched on, and the AERCam is brought to a halt -the velocity graph is a trapezium. 
The process is analogous for the y direction. 

3 Problem Formulation 

In this section we provide our formulation of the hybrid diagnosis problem. 

Definition 1 (Hybrid System). A hybrid system is a 5-tuple (,W, S. 3. S. qj), where 
- .V,finitesetofsystemmodes(it~ .... .ILL.). 
- S C R”, continuous state variables. :r( I )  is the continuous behavior at time I .  
- P, finite set of functions { f i t , .  . . . , f , L b } ,  and associated parameter values 0 such 

that for each mode, / I , ,  fp8 ( l .@, . r ( / ) )  : R x R x S -+ S defines the continuous 
behavior of the system in i t ,  .I 

- S, finite set of actions (0 I . . . . . q), which transition the system between modes. 
- cp, transition function which maps an action, mode and system state vector into a 

new mode and initial state vector, i.e., (j : S x .bl x S + .W x S. 

To define the hybrid diagnosis problem, we augment Definition 1 as follows. 

’ Parameter value ranges may be associated with 8. 



Debition2 (Diagnosable Hybrid System). A diagnosable hybrid system, 
(.bf. S. ;F. S.O. COMPS) is a hybrid system comprised of 711 potentially malfunc- 
tioning components CO3fPS = (q . . . . . c,,,) where 
- For each 14 E .M, 1 4  includes a designation of whether each ci E COMPS is 

operating normally, or abnormally, i.e., (-)nb(ci). 
- We assume that transitions to fault modes are achieved by exogenous actions. 

Hence, Z = ,Yc U Ep, where 
0 Sr is a 6nite set of controller actions, and 
0 S, is a 6nite set of exogenous actions. 

- A, the controller action history, the sequence of time-mdexed controller actions 

- Sd,, S, continuous state variables that are observable. .r,,I,.J/) is the observa- 

- ~ 3 ,  the observation history, the sequence of time-mdexed observations. 

performed 

tions at time 1. 

For notational convenience, ltr denotes a faulty mode, Le., a mode for which at least 
m e  ci E COdfPS is nL(ci) m l i p .  0 p  denotes the parameters associatedwith f l r r .  

In the case of the AERCam example, the potentially malfunctioning components are 
the 12 thrusters, and a mode 11 includes the behavior mode (e.g., translatex, translate- 
y, rotate-x, &.) and (-)nD(T,). i = 1. .  . . .12, for each thruster. The continuous state 
vector includes the .r, 9, z position of the AERCam, velocity and acceleration. The 
parameter values, 0 associated with each fu m the percentage &gadation of each of 
the thrusters. 

Definition 3 (Model). A model, If ml of a diagnosable hybrid systems is a time-mdexed 
modesequenceandassociatedparametervalues ( [ i t1  ... . . / 1 , , , ] ,  [ e , .  . .. .0,,]) 

Notice that each model of the system, (p, 0) induces a corresponding time-mdexed 
piecewise continuous sequence of functions [ f i l l  . . . . . f,,",] dictating system behavior. 

In this paper we make several simplifymg assumptions regarding our diagnosis task. 
In particular, we make a singletime fault assumption. We assume that our systems do 
not experience multiple sequential faults. Further, we assume that faults are abrupt, 
resulting in partial or full degradation of component behavior. We cast the hybrid diag- 
nosis task as the problem of finding the most likely model for the observation history, 
P(4Inrl I 0). Le, the sequence ofmodes and parameter values (p. 0) that best fit the 
observations over time. Under normal operation, the model of the system ~ ~ I m i , ~ ~ ~ , , , , , ~  is 
fully dictated by the sequence of controller actions cl and the nominal parameter values, 
0. Once again, we assume that the system operation is beingtracked by a monitoringand 
observer system (e.g., [ 19l)that ensures that the system behavior predicted by the model 
does not deviate sigudicantly from the observed behavior m n o d  system operation. 
When observations occur outside this range, the behavior is deemed to be aberrant and 
diagnosis is initiated Given a diagnosable hybrid system (.U. S. F. E, +. CO:\IPS), 
a controller action history, A and a histoq of observations, 0 which includes observa- 
tions of aberrant behaviory the hybrid diagnosis task is to determine what components 
are faulty, what fault mode caused the abenant behavior, when it occurred, and what the 
values of the parameters associated with the fault mode are. In the AERCam system, a 
diagnosis might be that thruster Ti experienced a blockage fault of SO%, at time / i .  



Once JImll,,,,.l12,,! has been rejected, we must find a new most likely model from 
among the potentially exponential (in Co:\IPS) number of mode sequences, occurring 
within a large but bounded time range. We propose to exploit previous research on 
ternpod causal graphs for qualitative diagnosis of continuous systems [ 181, to compute 
a set of candidate qualitathe diagnoses that are consistent with OUT system, in order to 
identify a preliminary subset of candidate models, whose likelihood can be estimated. 

Definition 4 (&tuple). A D-tuple is a 4-tuple (C, r .  / p .  Or), where l i p  is a fault 
mode, / p is the time the fault mode commenced, Or is the parameter values associated 
with the fault mode behavior, and C is the set of failed (abnormal) components in p p .  

Definition 5 (Candidate Qualitative Diegnosis). Given a diagnosable hybrid system 
with model ~\Iocl= (p. 0) an action history A, and a history of observations, 8 which 
includes observations of aberrant behavior, D-tuple (C, r .  / p 0,) is a candidate qual- 
itative diagnosis iff there exists a range of parameter values Bp = [@!. @,,], and time 
range 1 r = [Ir . I .I such that the occurrence of fault mode i f  r with parameter values Or 
in time range / p  is consistent with 0, A and N m f .  

Hence, a candidate qualitative diagnosis stipulates a fault mode, including one or 
more faulty components. It also stipulates a lower and upper bound, [ / I .  I,,], on the time 
the fault mode occurred This range generally corresponds to the start times of the ccm- 
troller induced modes preceding and following the fault, or up to the point the fault was 
detected. This candidate diagnosis induces an associated candidate model, M m l ~  = 
( [p i . .  . . . / f i - / i r . / l :+ ,  . . . . ./L;,,J. [e,, . . . . ei, ~ r . & + ,  . . . . - O ; ~ J )  correspondingto i\fml 
withthefaultmodeicr andOp msertedat Ip.Everysubsequentmode, . p l l , ,  
has nh(c+). E C enforced, and every subsequent set of parameters has the param- 
eters associated with faulty c a m p -  C enforced Computing candidate qualitative 
diagnoses is discussed in Section 4.1. 

Since each candidate qualitative diagnosis only conjectured ranges for the time of 
the fault mode, I p and parameter values associated with the fault mode, Bp, the asso- 
ciated candidate models are underconstrained. In Section 4.2, we discuss methods for 
estimating unique values for 1 r and @ p  and for esbimating a posterior probability for 
each of the candidate models, M o r l ~ . ,  given 0. 

Definition 6 (Candidate Diagnosis). Given a diagnosable hybrid system, a history of 
controller actions A, and a history of observations (3, D-tuple (C.pp. 1r .Op)  with 
associated model M m k  is a candidate diagnosis for the hybrid system, iff P(i\lrxlp I 
(3) > a, fur defiaedthresholdvalue o E [O. 11. 

4 Diagnosing Hybrid Systems 

In this section we discuss one method for computing hybrid diagnoses. In Section 4.1 
we discuss a technique for generating candidate qualitative diagnoses, and their associ- 
ated candidate models, In Section 4.2 we discuss techniques for model fittmg and for 
model (and hence diagnosis) comparison. In particular we discuss techniques for esti- 
mating the parameters of the candidate models, and the likelihood of the models, and for 



continued monitoring and reliuement of the caudidate models as the system continues 
to operate and observations continue to be made. 

We illustrate these techniques with the followmg simple AERCam example. Con- 
sider the scenario depicted in Fig. 2. In the first accelerate phase, the AERCam is being 
powered by thrusters T1 and T2. Assume that at some point m this phase, a sudden leak 
in the T2 thruster causes an abrupt change in its output. As a consequence, the AER- 
Cam starts veering to the right of the desired trajectory, as illustrated by the left-most 
dotted lines in Fig. 2. (The other dotted lines represent other potential candidate diag- 
noses consistent with the pomt of detection of the failure.) Soon after this occurs, the 
supervisory controller commands the AERCam to turn off Thrusters T1 and T2 with 
the objective of getting the AERCam to cruise m a straight line. In the fidty situation, 
the AERCam has some residual angular velocity about the z-axis, so it continues to 
rotate m fhe cruise mode. Then the controller turns on thrusters T3 and T-l, to decel- 
erate the AERCam with the objective of bringing it to a halt. Again, this obJective is 
not entirely achieved m the the faulty situation. Next, thrwters T5 a d  TG are switched 
on, to move the AERCam m the I/ direction. However, since the AERCam is not m the 
desired orientation after the M u r e ,  the position error due to faulty thruster T2 accumu- 
lates causing a greater and greater deviation from the desired trajectory of the system. 
The position of the AERCam is being continuously sensed, filtered for noise and mon- 
itored. At some pomt within the translation the trajectory exceeds the error bound, 
Le., P ( X o d l x w n , ~  < n) and is h u e d  by the monitoring system as aberrant relative 
to :\fmllx,,r,,la~. At this pomt, the diagnosis task begins. 

Error Bounds 

- - - - - - - - >  : ....................................................................... 
X-axis 

Flg. 2. Possible %ult tmjectorks of AERCam ( simplified for illushation purposes). 

4.1 Qualitative Candidate Generation 

Given the current system model Xorl = fp, 0) (commonly r\Id,,o,.,n~,~), a history of 
controller actions A, and a history of observations C’ including one or more observa- 



tions of abenant behavior, we wish to generate a set of candidate qualitative diagnoses 
(C. p p .  lr;.. Or;.), and associated candidate models as described in Definition 5. To do 
so, we extend techniques for generating qualitative diagnoses of continuous dynamic 
systems to deal with hybrid systems with multiple modes. The model and propagation 
mechanism, as applied to continuous systems diagnosis, is described m [ 181. 

In the case of our AERCam example, the action history A is [(on(Tl). on(T2)). 
(off(T1). off(T2)) .  (on(T3). on(T-l)), (off(T3). off(T4). on(TG), on(TG)), (off(T3). 
oWTG))]; the model, Af CX&,,,~,,,.,~ is the time-indexedsequence [(nccclcmlex. la / ) (  T1- 
T12). e), (mni.sc-r. -1nb(T1 -T12), t9),(deccfwrdcr. -.nb(Tl -T12). e), (nmlern/c-g ,  
-nh(T1 - T12), B), ( r r r~ iw-p.  ~ n b ( T 1  - 222). e)], where B is a vector of length 12 all 
of whose emtries axe 0 (percent degradstion in thrusters). 

To generate candidate qualitative diagnoses we construct an abstract model of the 
dynamic system behavior, Af C X ~ ) , ~ , . , , ~ , ~ ~  as a temporal causal graph. A part of the tem- 
poral causal graph for the AERCam dynamics is shown in Fig. 3. The graph expresses 
directed cause-effect relations between component parameters and the system state vari- 
ables. Links between variables are labeled as: (i) +l, implying direct proportionality, 
(ii) - 1, implying inverse proportionality, and (iii) J, implying an integrating relation. 
An integrating relation introduces a temporal delay m that a change on the cause side of 
the relation aff- the derivative of the variable on the effect side. This adds temporal 
characteristics to the relations between variables. Some edges are labeled by variables, 
implying the sign of the varieble in the particular situation defines the nature of the rela- 
tionship. The candidate generation algorithm is invoked for every initial instance of an 

-3. A subset of the temporal causal graph showing the relatiom between Thrusters 2'1 - 2'8 
and the x and y positions of the AERCam. 

aberrant observation. The aberrant observation plus the controller action history A are 
input to a backward propagation algorithm that operates on the temporal causal graph. 



The algorithm operates backwards from the last mode in the mode sequence of 3 I d  

Step 1 For the current mode, extract the corresponding temporal causal graph model, 
and apply the I&n@y Possible Fuultr algorithm. Details of this algorithm are presented 
in [ 181, but the key aspect of this algorithm is to propagate the abenant observation ex- 
pressed as a f value, backward depth-!irst through the graph. For example, given that 
the y-position of the AERCam has deviated - (i.e., below normal), backward prop- 
agation implies d(y ) /d /  is -, and so on, till we get Tc and Tr,  implying thrusters 
T.3 and TG are possibly faulty with decreased thrust performance. Propagation along a 
path can terminate if conflicting assignments are made to a no&. The goal is to system- 
atically propagate observed discrepancies backwd  to iden@ all possible candidate 
hypotheses that are consistent with the observations. In our example, the component 
parameters, COMPS = {TI,. . . . T12) form the space of candidate huh. 

Step 2 Repeat Step 1 for every mode m the mode sequence, to ii I .  The system model 
needs to be substituted as the algorithm traverses the mode sequence backwards. There- 
fore, back propagation will be performed on a different temporal causal graph for each 
mode in the controller history2. 

The output of this step is a set of qualitative diagnoses (C. irr. I F .  Or), each with 
an associated candidate model, as described in Section 3. Returning to our AERCam 
example, three qualitative candidate diagnoses are generated. The first candidate diag- 
nosis is that T2 W e d  in the .r acceleration phase. The time of the hult mode transition 
is [ I  I. 1-21, and the parameters associated with the Wure - the percentage degradation 
of the component is in the range [0, 1001. So the first candidate qualitative diagnosis 
is (T2. (nmlern1c-r. nb(T2). 4 i ( T l . T 3  - T12). e p ) .  [ I  I .  I ? ] .  [O. 1001). The candi- 
datemodel simply has ( w m l c m l e x .  nIi(T2). -d(Tl), *b(T3-T12)) insertedafter 
the mode (ncdwnlr - r .  4i(T1- T12)), and nb(T2) enforced m every subsequent 
mode. The second candidate qualitative diagnosis is that T4 failed in the deceleration 
phaseofr translation, i.e., (T-i. (c~wlernler .nO(T-i) .  -d(T1 -TXTS-T12).Op). 
[13.11]. [O. lOO]). The third candidate is that TG W e d  during ,y acceleration, i.e., (TG. 
(nrcdernle-y, ab(TG). lnO(T1 - TS. T7 - T12).Op). [ I  ID]. [O. 10O]), where I D is 
the time of detection of the abenan! behavior. In each case Or;. is a vector of length 12 
with every entry equal to 0 (percentage degradation), except the entries corresponding 
to the faulty thrusters, C which will have the range [O. 1001. 

4.2 Model Fitting and Comparison 

Given the candidate qualitative diagwses and their associated candidate models, the 
next phase of the diagnosis process is quantitative refinement of the qualitative can- 
didate diagnoses and their associated models through parameter estimation and data 
fitting, followed by tracking of the fit of subsequent observations to the candidate mod- 
els. The goal is to at least provide a probabilistic ranking of the plausible candidates, if 
not a unique model (and hence diagnosis). 

We may cut off back-pmpagation along the mode sequeoce beyond a time limit. 



As observed in the previous section, the model associated with the candidate qualita- 
tive diagnosis, i\Imlc is underconstrained. Both the time of the fault mode occurrence, 
/ p and the parameters associated with the faulty behavior Or are represented as ranges 
and must be estimated. Further, the candidate qualitative diagnoses were generated from 
initial observations of aberrant behavior, and their consistency can be further evaluated 
by monitoring the qualitative transients associated with each candidate. The refinement 
process is performed by a set of tmckers [21], one for each candidate diagnosis and 
associated model. Each tracker comprises both a quulitutiw transient unulysb compo- 
nent and a quantitative model estimtwn, component. The two components operate m 
parallel as described below. 

Qualitative lkansient Analysis 
The qualitative transient analysis component performs a M e r  qualitative analysis of 
the consistency of candidate qualitative diagnoses based on monitoring of higher-order 
transients whose manifestation is seen over a longer period of time. If the transients 
of a candidate qualitative diagnosis do not remain consistent with subsequent observa- 
tions, the candidate diagnosis will be eliminated and the model estimution component 
informed The technique we employ is derived from techniques for qualitative monitor- 
ing of continuous systems. Details of the algorithm appear m [ 181. 

Model Estimation 
The purpose of the model estimation component is to perform quantitative model fit- 
ting, i.e., to provide a quantitative estimate of the parameters of the models and to assign 
a probability to each of the candidate models (and hence candidate diagnoses), given 
the noisy observed data. In particular, given a candidate model, ~llorl~. the model es- 
timation component uses parameter estimation techniques to estimate both the time at 
which the failure occurred, 1 p ,  and the value for the parameters, Or, associated with the 
conjectured Mure mode. In this paper we discuss two alternate approaches to our time 
and parameter estimation problem. The h t  approach is based on Expectation Maxi- 
mization (EM) (e.g., [8]), an iterative technique that converges to an opthnal value for 
I p and 6 r simultaneously. The second approach we consider employs General Likeli- 
hood Ratio (GLR) techniques (e.g., [5]) to estimate the time of failure I r ,  and then uses 
the observations obtained after the hilure to estimate the fault parameters, 6 r, by a least 
squares method. As described in Section 3, the outcome of both approaches is a unique 
value for 1 p and B p  and a measure of the likelihood of _?Iorlc. given the observations. 
The proposed approaches to model fitting have trade-offs and we axe currently assess- 
ing the elkicy of these and other alternative approaches througb experimentation. 

EM-Based Approacb The Expectation Maximization (EM) algorithm (e.g., [8]) pro- 
vides a teclmique for finding the maximum-likelihood estimate of the parameters of an 
underlying distribution fmn a given set of data, when that data is incomplete or has 
missing values. The parameter estimation problem we address m this paper is a vaxi- 
ant of the motion segmentation problem described in [24]. Here, we define the basic 
algorithm and the mtuition behind our approach. (See [SI for more details.) 

The time of mure, I p = [ [ I ,  (4 of om candidate qualitative diapsisdictates the 
mode in which the failure is conjectured to have occurred Let us call this mode I f t .  
The behavior of our hybrid system in mode I t ,  is described by the continuous function 



f,,,, with known parameters 0,. At some (to be estimated) time point 1 p within the 
predicted time period of /i,, we have conjectured that the system experienced a fault 
which transitions it into mode l i p .  The behavior of our hybrid system m mode /ir is 
described by the continuous function f,,,, with unknown parameters, B p .  We also have 
a set ofdata points 0' = [.rO,,#(/l). . . . . . I - , , , ,~( / , , ) ]  C 8, which eitherrefiectthe behavior 
of the system under fit, or under f l l F .  

Given all this information, o'p task is to find 1) values for parameters Or;., and 2) an 
assignment of the data points 8 to eithm pi or / i  r so that we maximize the fit of the 
data to the two functions. The assignment of data points will in turn tell us the value 
of /I.'. EM p v i d e s  an iterative a!gorithm which converges to provide a maximum- 
likelihood estimate for @ p  given 0 , i.e., roughly we are calculating the likelihood of @, 

The basic EM algorithm comprises two steps: an Expectation Step (E Step), and a 
q e )  = P(O' I e r ,  A~o&.). 

Maximization Step (M Step) [a]: 
0 Select an initial (random) value for B p .  
0 Iterate until convergence: 

- E Step: assign data points to either fl,, (0,) or f,t, (Or), which ever fits it best. 
- M Step: reestimate Bp using the data points assignedto f,,, (OF). 

The assignment of data points to pj and /ip provides an estimate for 11.'. We may 
exploit the fact that the assignment of data points is temporally correlated with all pomts 
before / I  belonging to / I , ,  and all points after 11 belonging to / i f .  We may also exploit 
the fact that data pomts at the beginning of the intend will belong to / I , ,  while those 
at the end will belong to l i p .  These task-specific qualities help our algorithm converge 
more quickly. 

EM provides a rich algorithm for maximum-likelihood parameter estimation when 
we don't know the value of / r .  In some hybrid diagnosis applications, depending upon 
the sensors in our system, and the level of noise in the sensom, we may be able to de 
velop monitoringtechniques that will help isolate a reasonable value for / r ,  minimizing 
the need for iteration in EM. In such cases, an alternative to the EM-based approach is 
to first estimate 1 r using the Generalized LikelihoodRatio (GLR) method [5], followed 
by parameta estimation of O F .  

CLR + Least Squares Approach Here, we divide the parameter estimation problem 
into two parts: (i) estimate the time of failure, / r ,  using the Generalized Likelihood 
Ratio (GLR) method, and (ii) apply a standard least squares method for parameter esti- 
mation. The intuition is that solving the problem in two parts simplifies the estimation 
process, and very likely mitigates the numerical convergence problems that arise in 
dealing with complex higher-order models. 

The GLR method for detecting abrupt changes in continuous signals is described 
in [5]. We have applied it to fault transients analysis in complex k i d  thermal systems 
[ 161. Here we pmvide an overview of the method for the single parameter case. Assume 
that the signal under scrutiny is a timeindexed sequence of random variables y (k), with 
probability density function, po (g) in desked mode p i ,  and ~ , J , ( Y )  in fault mode lip. 
9 is either contained in . I - ~ / , ~  or computed from .r,,/,$. We assume that a fault causes an 
abrupt change in y(li). In the case of the AERCam, y captures the difference between 
the observed and expected values of the, e.g., acceleration, as predicted by the model. 



The ceatral quantity in the change detection algorithm is the cumulative sum of the 
log-likelihood ratio for a window of observations between times 7)). and n, 

Again, this ratio is a function of two unknowns: 1 p and Or. The common statistical 
solution is to use maximum likelihood estimates for these two parameters, resulting in 
a double maximization: 

If we assutne that probability density functions, po; ( 4 )  and po,(y) are Gaussian, 
thea gn reduces@: 

where 
When processing a sequence of samples, the point of abrupt change, 1 p ,  is computed 

fiom 7nin{n : g,J 2 I)}, where h is an appropriately defined threshold Hence, the 
smaller the value of It ,  the more sensitive the function to change, and unfortunately to 
Mse drams, so 11 must be set carefully. 

Once I p is estimated, data pomts observedafter 1 p ,  are usedto estimate the parame- 
ter, O p  for a hypothesized fault Using regressiontechniques. In the case of the AERCam, 
the position vector of the MRCam is modeled as a set of quadratic functions m terms 
of the thruster force. These functions contaiu one unknown, O p ,  the parameter that cor- 
responds to the degree of degradation in the faulty tbmster. The least squares estimate 
f a  Or;. is computed, and the the measure of fit of the candidate model to the observed 
data used to estimated the probability of the candidate model (and hence, diagnosis). 

Model Comparison 
From the model estimation component, each tracker computes the likelihood of its 
model Mmlc, and hence of the associated candidate diagnosis (C.pj-. 1 p. e,), as a 
measure of fit of the observations to the model. As new data .roc,*(!) are observed, Or 
and l p .  are adjusted and P(Almfc 1 r,,,,ll(f)) computed. If the iikelihood of 3 I d p  
Mls below a predefined acceptable likelihood threshold, R, then its tracker is texmi- 
nated, and the associated candidate diagnosis (C. 11 r;., 1 r;.. Or;.) removed from the list of 
candidate d i a g ~ ~ s e s .  Tracking termhates when a unique diagnosis is obtained, or when 
the diagnoses are sufficiently discrhninated to determine suitable controller actions. 

and 0: are the mean and variance for PO, ( y), respectively. 

5 Relatedwork 

The specific problem of diagnosing hybrid systems has received little attention to date, 
although there is much related work. Within the AI community, there has been a p a t  



deal of research on diagnosing static systems (e.g., [14]), while much less on diag- 
nosing discrete dynamical systems (e.g., [17,25]), and qualitative representations of 
continuous systems (e.g.,. [ 181). Within the FDI community, the largest proportion of 
research has focused on diagnosing continuous systems (e.g., [ 13,111). The most com- 
mon model-based approaches use observer schemes(e.g., [ 12,20]), where the goal is to 
design residual generators based on observed discrepancies, such that individual resid- 
uals are sensitive to a particular subset of faults. There is also complementaxy work by 
Basseville [4], usmg model-based statistid processmg techniques for early fault d e  
tection and residual identification. [ 181 perform residual generation and analysis task in 
a qualitative framewok to addresa some of the computational issues that arise in han- 
dling the complex dynamics that occur in fault transients, with some preliminary work 
on building multiple observers for hybrid systems [ 191. Diagnosis of discrete-event sys- 
tems has also been studied within the FDI community (e.& [22,15]). Fabre et al. [ 101 
have employed stochastic Petri nets based on a Hidden Markov Model probabilistic 
scheme for alarm analysis. Udorhmately, it is not clear how to systematically derive 
such representations fmm the physical system models that we work with. 

6 Summary 

In this paper we addressed the problem of diagnosing hybrid systems. The main cm- 
triiticms of the paper are 1) formulation of the hybrid diagnosis problem as model 
selection; 2) the exploitation of techniques for qualitative diagnosis of continuous sys- 
tems to reduce the diagnosis search space; and 3) the use of parameter estimation and 
data fitting techniques for evaluation and comparison of candidate diagnoses. This work 
continues with experimental analysis of the proposed techniques, and a more formal 
characterization of o w  approach in terms of Bayesian model selection. 
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